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Abstract- Accurate forecasting of carbon dioxide (CO2) emissions is crucial for developing effective environmental
policies and mitigating climate change. In this study, we apply machine learning models, including Random Forest,
XGBoost, LightGBM, and CatBoost, to predict CO2 emissions based on a dataset covering 107 countries from 2000 to
2020. We investigate the influence of key economic, social, environmental, and energy-related factors on CO2
emissions and assess the predictive performance of each model. To enhance interpretability, we employ feature
importance analysis to identify the most significant drivers of CO2 emissions. By leveraging Permutation Importance,
we quantify the contribution of various features across different models. Our methodology integrates a time-window-
based feature engineering approach, allowing us to capture temporal patterns in CO2 emissions trends. Experimental
results show that CatBoost delivers the highest overall predictive performance, benefiting from its Ordered Boosting
mechanism and superior handling of categorical data. LightGBM and XGBoost also achieve strong results, with
XGBoost demonstrating notable advantages in controlling prediction bias. The feature importance analysis highlights
the dominant role of energy-related factors, particularly electricity consumption from fossil fuels and renewables, in
shaping COz emissions. Additionally, social and economic indicators, such as land area and GDP growth, exhibit
varying levels of impact across models. This study underscores the efficacy of machine learning techniques in CO2
emissions forecasting and provides valuable insights into the underlying drivers of emissions. The findings contribute
to advancing data-driven environmental policy-making.

Keywords: Carbon Dioxide Emissions Prediction, Machine Learning, Ensemble Learning Models, Permutation
Importance.

I. INTRODUCTION

Rising atmospheric CO; concentration is a primary driver of global climate change and threatens
ecosystems, economic activity, and social welfare. Although climate change manifests as an
environmental problem, its causes are closely linked to heterogeneous development paths and energy
structures across countries. In the context of the Paris Agreement and carbon-neutrality commitments,
reliable CO, emissions prediction is crucial for designing mitigation strategies and evaluating policy
scenarios.

Traditional statistical approaches, such as multiple regression, often struggle with nonlinear
relationships, high-dimensional feature spaces, and complex interactions between economic growth,
energy use, and demographic factors. Machine learning (ML), and in particular tree-based ensemble
models, can capture such nonlinearities and interactions while offering competitive predictive
performance.

Despite a growing body of ML-based environmental studies, there remains a shortage of systematic
comparisons of ensemble algorithms using a unified multi-country dataset, combined with a transparent
assessment of feature importance. To address this gap, we: (1) Construct a joint dataset for 107 countries
over 2000-2020, retaining 14 key factors with established relevance to CO; emissions. (2) Implement a 5-
year sliding-window feature engineering scheme to incorporate short-term temporal dynamics. (3)
Compare four ensemble models-Random Forest, XGBoost, LightGBM, and CatBoost-in terms of multiple
error metrics. (4) Quantify feature contributions via permutation importance, aggregated across time
lags.

The study aims to provide both a robust predictive benchmark and interpretable evidence on the main
drivers of CO; emissions at the global scale.

II. METHODOLOGY
2.1. Ensemble learning models

We consider four tree-based ensemble models that are widely used in tabular regression tasks and
known for robust performance and interpretability.
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2.1.1. Random Forest (RF): Random Forest constructs an ensemble of decision trees trained on bootstrap
samples of the data. At each split, only a random subset of features is considered, which decorrelates trees
and improves generalization. The final prediction is the average of all tree outputs. RF is simple, robust to
noise, and relatively insensitive to hyperparameters.

2.1.2. XGBoost:

XGBoost is a gradient boosting framework that builds trees sequentially, with each new tree fitted to the
residuals of the current ensemble. It uses second-order information (gradients and Hessians) to optimize
a regularized objective, controlling both training loss and model complexity. Learning rate and
regularization parameters help prevent overfitting and improve stability.

2.1.3. LightGBM:

LightGBM is a gradient boosting method optimized for efficiency on large, high-dimensional datasets. It
employs histogram-based feature binning and leaf-wise tree growth with depth constraints, significantly
reducing training time and memory usage. LightGBM also supports advanced regularization and handles
sparse features effectively.

2.1.4. CatBoost:

CatBoost is a gradient boosting method with specific optimizations for categorical features and small
datasets. It uses ordered boosting to reduce target leakage, symmetric tree structures for efficient
implementation, and specialized encodings for categorical variables. These design choices improve
generalization and reduce overfitting, making CatBoost particularly effective on heterogeneous tabular
data.

2.2. Permutation importance and temporal aggregation

To interpret the trained models, we adopt permutation importance. For a given trained model and
evaluation set, the importance of feature x;is defined as the increase in prediction error when the values
of x;are randomly permuted while all other features are kept fixed. A larger performance degradation
implies greater importance of that feature.

Because our input uses a 5-year sliding window, each original variable x; appears at time lags t, t-1, .., t-4.
We aggregate its importance over the window by summing the importance scores across lags:

Importance(x;) = Xye(o,1,2,3,4) Importance (x; ),

which yields a single contribution score per conceptual feature. This provides an interpretable ranking of
long-short-term influences on COzemissions.

III. EXPERIMENTAL SETUP

3.1. Dataset and preprocessing:

We use a dataset covering 107 countries from 2000 to 2020, resulting in 2247 samples after
preprocessing. The variables include 14 factors capturing economic, demographic, geographic, energy,
and technological characteristics, such as GDP growth, GDP per capita, population, land area, latitude,
access to electricity, electricity generation from fossil fuels and renewables, low-carbon electricity share,
primary energy consumption per capita, energy intensity, and renewable electricity capacity per capita.

Data preprocessing proceeds as follows:

1. Data cleaning: missing values and obvious outliers are treated using statistical techniques and
domain knowledge to improve consistency.

2. Feature selection: based on prior literature and preliminary analysis, we retain 14 core
predictors and discard variables with weak or redundant contributions.

3. Normalization: we apply Min-Max scaling to mitigate scale differences and stabilize model
training.

4. Joint modeling: country-level time series are pooled into a single dataset to train one unified
global model.

5. Data splitting: the data are partitioned into training, validation, and test sets in a 6:2:2 ratio to
enable unbiased performance assessment.
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3.2. Prediction target and time-window design

To predict annual CO, emissions, we employ a 5-year sliding window. For each target yeart, the input
vector concatenates the values of the 14 features for years t-4 to t (inclusive), and the output is the
COzemissions at year t.

This window length balances two considerations:
1. it is long enough to capture short-term dynamics and structural changes in energy use and
economic activity.
2. it remains compact, limiting dimensionality and reducing overfitting risk. The choice is also
consistent with common practices in time series forecasting where medium-length windows are
used to capture recent trends.

3.3. Evaluation metrics

We evaluate models on the test set using five standard metrics for regression: coefficient of
determination R?, mean squared error (MSE), root mean squared error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE).Together, these metrics provide a comprehensive view of
global fit, error magnitude, and relative error behavior.

IV. RESULTS AND DISCUSSION

4.1. Learning curves

We illustrate learning dynamics using the CatBoost model as a representative example (Figures 1 and 2).
During training, both training and validation R? increase and stabilize around 0.93, while RMSE decreases
and converges to approximately 2.73x105. The close alignment of training and validation curves suggests
good generalization and limited overfitting. Random Forest does not naturally provide a meaningful
epoch-based learning curve because trees are grown on bootstrap samples in a single stage rather than
via iterative residual fitting.

Learning Curve of R? for CatBoust
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Figure 1: Learning Curve of R2 for CatBoost
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Figure 2: Learning Curve of RMSE for CatBoost

4.2. Comparative prediction performance
Table 1 summarizes the performance of all four models on the test set. The CatBoost model attains the
highest R2(0.9290) and the lowest MSE/RMSE, indicating superior overall fit and error control. LightGBM
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performs comparably, with slightly lower Rz and somewhat higher error metrics. Both models clearly
outperform Random Forest and XGBoost in terms of global goodness of fit.

Table 1: Comparison of model performance.

Model Avg R2 | Avg MSE Avg RMSE | Avg MAE | Avg MAPE
Random Forest | 0.8919 | 113337578108.78 | 336656.47 | 73959.43 | 2022.23
XGBoost 0.8936 | 111403327458.13 | 333771.37 | 53801.34 | 132.25
LightGBM 0.9232 | 80463645220.44 | 283661.15 | 57984.45 | 271.15
CatBoost 0.9290 | 74316642461.03 | 272610.79 | 60572.95 | 2108.96

Interestingly, XGBoost achieves the best MAE and MAPE, implying that it handles local prediction errors
and relative deviations particularly well, which may be advantageous in applications where bias control
at the individual-country level is critical. Random Forest yields the weakest performance across most
metrics but still reaches an R2close to 0.89, making it a reasonable baseline and a robust, easy-to-tune
model for preliminary analysis.

Overall, CatBoost and LightGBM appear to be strong default choices for CO, emissions forecasting with
this type of data, while XGBoost can be preferred when minimizing local bias is the primary objective.

4.3. Feature importance analysis
Permutation importance scores for the 14 features are computed for all four models. Table 2 reports the

aggregated importance values, highlighting the most influential variables.

Table 2. Feature importance values for different models

Feature Random Forest | XGBoost LightGBM CatBoost

GDP growth 2.5679e-04 -4.4279e-03 | -4.5251e-06 | 3.7521e-02
GDP per capita 0.0000e+00 1.0013e-02 | 7.4584e-04 | 2.0622e-02
Population density 0.0000e+00 7.7472e-04 | 8.5298e-05 | 3.5378e-02
Land area 3.2897e-02 1.2336e+00 | 1.3272e-01 | 2.9307e-01
Latitude 1.6045e-01 9.6192e-06 | 1.4167e-01 | 3.1739e-02
Renewable energy share -5.5275e-05 2.5860e-06 | 3.4001e-04 | 3.0777e-02
Access to electricity 0.0000e+00 2.3961e-05 | 1.3213e-05 | 4.1829e-02
Access to clean fuels for cooking 0.0000e+00 5.8716e-06 | 1.7262e-04 | 2.8613e-02
Electricity from fossil fuels 3.5012e-01 8.2482e-02 | 7.8023e-01 | 4.0250e-01
Electricity from renewables 1.1424e-01 1.3351e-04 | 3.4691e-01 | 1.2907e-01
Low carbon electricity 0.0000e+00 5.4632e-03 | 1.1704e-05 | 2.7701e-02
Primary energy consumption per capita 8.7420e-05 0.0000e+00 | 1.2355e-02 | 5.4914e-02
Energy intensity level of primary energy 1.1105e-05 1.2337e-04 | 1.0783e-04 | 2.8128e-02
Renewable electricity generating capacity per capita | 0.0000e+00 0.0000e+00 | 4.9166e-04 | 4.0469e-02

“Electricity from fossil fuels” has the highest importance in all models, especially in LightGBM (= 0.78)
and CatBoost (= 0.40). This confirms its dominant role in explaining CO; emissions. “Electricity from
renewables” and “Low-carbon electricity” also exhibit substantial contributions, though generally lower
than fossil-fuel electricity.

“Land area” shows consistently high importance, particularly in XGBoost, where it receives the largest
score among all features. “Latitude” is also influential in Random Forest and LightGBM, suggesting that
geographic position-and associated climate conditions, energy demand, and infrastructure patterns-
meaningfully affect emissions trajectories.

GDP-related variables and population measures have more moderate yet non-negligible importance. In
CatBoost, “GDP growth” and “GDP per capita” contribute positively to prediction accuracy, whereas
XGBoost assigns a slightly negative importance to GDP growth, reflecting a complex, model-dependent
relationship between economic expansion and emissions.

Variables such as “Renewable energy share”, “Energy intensity of primary energy”, and “Renewable
electricity generating capacity per capita” generally show smaller but non-zero importance. In some
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models, renewable-related features have negative permutation scores, indicating that their effects may be
intertwined with other predictors or that higher renewable shares coincide with structural changes in the
energy system.

The feature importance visualization for CatBoost (Figure 3) shows a clear ranking pattern, with
“Electricity from fossil fuels”, “Land area”, and “Electricity from renewables” as the top three features.
This aligns with the view that emissions are primarily shaped by energy structure, physical scale, and

spatial characteristics, modulated by socioeconomic factors.
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Figure 3: Feature Importance for CatBoost

V. CONCLUSION

This paper investigates the use of ensemble learning models for predicting CO; emissions using a multi-
country panel dataset spanning 107 countries from 2000 to 2020. By combining a 5-year sliding-window
feature representation with four tree-based models (Random Forest, XGBoost, LightGBM, and
CatBoost).We systematically evaluate predictive performance and interpret the main drivers of emissions
via permutation importance.

CatBoost delivers the best overall performance, with the highest R2and lowest RMSE, followed closely by
LightGBM. Both models effectively capture nonlinear interactions in the data and show strong
generalization. XGBoost performs competitively and achieves the smallest MAE and MAPE, making it
attractive for applications focusing on relative error control. Random Forest is less accurate but remains a
robust benchmark.

Energy-related variables, especially electricity generation from fossil fuels, are the most important
predictors across all models. Electricity from renewables, land area, and latitude also play key roles,
reflecting the combined influence of energy structure, physical scale, and geography on emissions
patterns. Economic and social indicators further modulate emissions but exhibit more model-dependent
effects.

The results demonstrate that ensemble learning provides reliable and interpretable tools for CO;
emissions forecasting. The prominence of fossil-fuel electricity underscores the importance of
decarbonizing power systems, while the significance of land area and latitude suggests that
geographically tailored mitigation strategies are needed.

Future work may extend this framework by incorporating additional explanatory variables, exploring
hybrid models that combine machine learning with domain-specific constraints, and performing regional
analyses to uncover heterogeneous effects across country groups.
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